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The Second-Order Differential Operator

Definition: Let L : L2(a, b) ∩ C 2(a, b)→ L2(a, b) be the
second-order differential operator on an interval I ⊂ R such that

Ly = p(x)y ′′ + q(x)y ′ + r(x)y

where p ∈ C 2(a, b), q ∈ C 1(a, b), and r ∈ C (a, b) where C is the
collection of complex continuous functions.
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Function space and operator theory

Definition: C ([a, b]) equipped with the inner product

〈f , g〉 =
∫ b
a f (x)g(x)dx <∞ and norm

||f || =
√
〈f , f 〉 =

√∫ b
a |f (x)|2dx for some f , g ∈ C ([a, b]).

For an inner product space X and operator A : X → X ,

Linearity: A has the properties A(ax + by) = aAx + bAy and
A(cx) = cA(x) ∀a, b, c ∈ F and x , y ∈ X .

Adjoint: We can find an A′ satisfying the relation
〈Ax , y〉 = 〈x ,A′y〉 if A exists. Self-adjoint if A′ = A.

Sturm-Liouville Problems require that our operator L be
self-adjoint...
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Self-adjoint operator

Every 2nd-order, self adjoint differential operator has the following
form:

L =
d

dx
p(x)

d

dx
+ r(x)
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Problem Setup

Let L = d
dx (p(x) d

dx ) + r(x) be formally self-adjoint.

The Sturm-Liouville Problem

We have an eigenvalue equation

Lu + λρ(x)u = 0, x ∈ (a, b)

under the separated homogeneous boundary conditions,

α1u(a) + α2u
′(a) = 0 |α1|+ |α2| > 0

β1u(b) + β2u
′(b) = 0 |β1|+ |β2| > 0

where α1, α2, β1, β2 are real. Assume that ρ(x) = 1.
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What’s the Purpose?

Solving partial differential equations in conjunction with
physical phenomena

Technique: Separation of Variables

Solutions: eigenfunctions (measurable quantity) corresponding
to eigenvalues
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Remark

The eigenfunctions form an orthonormal basis for L2.

Theorem

For any f ∈ L2, an orthogonal set of functions {ρn}n as n→∞ is
complete iff it satisfies Parseval’s Relation,

||f ||2 =
∞∑
n=1

|〈f , ρn〉2|
||ρn||2

Moreover, this sum converges to f in the L2 norm as n→∞
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Examples of Sturm-Liouville Forms

Laplace’s Equation

∇2ρ = f

Schrödinger’s Equation (Rigid Rotor)

−i~ψt = − ~
2me

∆ψ − k
e2

r
ψ

Credit: Andeggs, Wikimedia
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Laplace’s Equation on a Sphere

1

sin θ

∂

∂θ
(sin(θ)

∂u

∂θ
) +

1

sin2(θ)

∂2u

∂φ2
= M̂u = −l(l + 1)u

Ansatz: u(θ, φ) = Θ(θ)Φ(φ)

Applying separation of variables in terms of θ and φ, we get

sin(θ)(sin(θ))Θ′)

Θ
− λ sin2(θ) = m2

Φ′′

Φ
= −m2
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Solving for the Variables

General Solution:

Θ(θ) = Pm
l (cos θ)

Φ(φ) = Ae imφ + Be−imφ

Combining the two equations, we get the following

Ym
l (θ, φ) =

√
2l + 1

4π

l −m

l + m
Pm
l (cos(θ))e imφ

Remark

PM
l denotes the Legendre Polynomials, the sequence of polynomial

solutions from Legendre’s Equation,

(1− x2)u′′ − 2xu′ + n(n + 1)u = 0

such that x ∈ (−1, 1), p(x) = 1− x2 and λ = n(n + 1).
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Schrödinger’s Equation for Hydrogen Atom

−i~ψt = − ~
2me

∆ψ − k
e2

r
ψ

−i~ψt = − ~2

2me

[
∂

∂r
(r2

∂

∂r
+

1

sin(θ)

∂

∂θ
(sin(θ)

∂

∂θ
) +

1

sin2(θ)

∂2

∂φ2

]
ψ−k e

2

r
ψ

Ansatz: Ψ(r , θ, φ, t) = R(r)u(θ, φ)e(−iEt)/~, but set t = 0.

~2

R(r)

∂

∂r
r2
∂

∂r
R(r) +

2me

R(r)
[E − V ]R(r) = λ

1

u(θ, φ)
M̂2u(θ, φ) = λ

note: M̂ is the operator for u(θ, φ)

Nicholas Bond Bishop Sturm-Liouville Theory



Solving for the Variables

This system is exactly solvable!

Ψn,l ,m = Rn
l Y

m
l e(−iEt)/~

Wavefunctions for the Spherical Harmonics

Structure of atomic orbitals

Remark

Rn
l represents the Laguerre polynomials, the sequence of solutions

from Laguerre’s equation,

e−x
2
(xu′′(1− x)u′ + nu) = 0

for x ∈ R where p(x) = xe−x
2

vanishes at x = 0.
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Credit: Mark Warner, University of Sheffield
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In sum

Astounding result

Both the Legendre and Laguerre polynomials form an orthonormal
basis with respect to the L2 inner product!!

Statement

We can construct solutions to Schrödinger’s equation from a linear
combination of these orthonormal basis functions, particularly
those from the wavefunctions Ψn,l ,m.
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